Printable, adhesive, and self-healing dry epidermal electrodes based on PEDOT:PSS and polyurethane diol

Author:

Kateb PierreORCID,Fan JiaxinORCID,Kim JinsilORCID,Zhou Xin,Lodygensky Gregory AORCID,Cicoira FabioORCID

Abstract

Abstract Printable, self-healing, stretchable, and conductive materials have tremendous potential for the fabrication of advanced electronic devices. Poly(3,4-ethylenedioxithiopene) doped with polystyrene sulfonate (PEDOT:PSS) has been the focus of extensive research due to its tunable electrical and mechanical properties. Owing to its solution-processability and self-healing ability, PEDOT:PSS is an excellent candidate for developing printable inks. In this study, we developed printable, stretchable, dry, lightly adhesive, and self-healing materials for biomedical applications. Polyurethane diol (PUD), polyethylene glycol, and sorbitol were investigated as additives for PEDOT:PSS. In this study, we identified an optimal printable mixture obtained by adding PUD to PEDOT:PSS, which improved both the mechanical and electrical properties. PUD/PEDOT:PSS free-standing films with optimized composition showed a conductivity of approximately 30 S cm−1, stretchability of 30%, and Young’s modulus of 15 MPa. A low resistance change (<20%) was achieved when the strain was increased to 30%. Excellent electrical stability under cyclic mechanical strain, biocompatibility, and 100% electrical self-healing were also observed. The potential biomedical applications of this mixture were demonstrated by fabricating a printed epidermal electrode on a stretchable silicone substrate. The PUD/PEDOT:PSS electrodes displayed a skin-electrode impedance similar to commercially available ones, and successfully captured physiological signals. This study contributes to the development of improved customization and enhanced mechanical durability of soft electronic materials.

Funder

Canada First Research Excellence Fund

Natural Sciences and Engineering Research Council of Canada

Ministère de la Défense Nationale

Fonds de recherche du Québec—Nature et technologies

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3