Affiliation:
1. School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571799, China
Abstract
Over recent years, thermoplastic polyurethane (TPU) has been widely used as a substrate material for flexible strain sensors due to its remarkable mechanical flexibility and the ease of combining various conductive materials by electrospinning. Many research advances have been made in the preparation of flexible strain sensors with better ductility, higher sensitivity, and wider sensing range by using TPU in combination with various conductive materials through electrospinning. However, there is a lack of reviews that provide a systematic and comprehensive summary and outlook of recent research advances in this area. In this review paper, the working principles of strain sensors and electrospinning technology are initially described. Subsequently, recent advances in strain sensors based on electrospun TPU are tracked and discussed, with a focus on the incorporation of various conductive fillers such as carbonaceous materials, MXene, metallic materials, and conductive polymers. Moreover, the wide range of applications of electrospun TPU flexible strain sensors is thoroughly discussed. Finally, the future prospects and challenges of electrospun TPU flexible strain sensors in various fields are pointed out.
Funder
Key Project of Research and Development in Hainan Province
Natural Science Foundation of Hainan Province
Education Department of Hainan Province
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献