Flexible Strain Sensors Based on Thermoplastic Polyurethane Fabricated by Electrospinning: A Review

Author:

Zhou Zhiyuan1,Tang Weirui1,Xu Teer1,Zhao Wuyang1,Zhang Jingjing1,Bai Chuanwu1

Affiliation:

1. School of Tropical Agriculture and Forestry, Hainan University, Danzhou 571799, China

Abstract

Over recent years, thermoplastic polyurethane (TPU) has been widely used as a substrate material for flexible strain sensors due to its remarkable mechanical flexibility and the ease of combining various conductive materials by electrospinning. Many research advances have been made in the preparation of flexible strain sensors with better ductility, higher sensitivity, and wider sensing range by using TPU in combination with various conductive materials through electrospinning. However, there is a lack of reviews that provide a systematic and comprehensive summary and outlook of recent research advances in this area. In this review paper, the working principles of strain sensors and electrospinning technology are initially described. Subsequently, recent advances in strain sensors based on electrospun TPU are tracked and discussed, with a focus on the incorporation of various conductive fillers such as carbonaceous materials, MXene, metallic materials, and conductive polymers. Moreover, the wide range of applications of electrospun TPU flexible strain sensors is thoroughly discussed. Finally, the future prospects and challenges of electrospun TPU flexible strain sensors in various fields are pointed out.

Funder

Key Project of Research and Development in Hainan Province

Natural Science Foundation of Hainan Province

Education Department of Hainan Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3