Cluster-based Bayesian approach for noisy and sparse data: application to flow-state estimation

Author:

Kaiser Frieder1ORCID,Iacobello Giovanni2ORCID,Rival David E.13ORCID

Affiliation:

1. Department of Mechanical and Materials Engineering, Queen’s University, Kingston, Ontario, Canada

2. School of Mechanical Engineering Sciences, University of Surrey, Guildford, UK

3. Institute of Fluid Mechanics, Technische Universität Braunschweig, Braunschweig, Germany

Abstract

This study presents a cluster-based Bayesian methodology for state estimation under realistic conditions including noisy data from sparse sensors. The proposed approach is interpretable and, building upon previous work on transition networks, explicitly accounts for experimental noise within the data-driven framework by means of data clustering. Experimental measurements are exploited, beyond model training, to quantify the degree of uncertainty (noise) for each trained state. Such noise levels are eventually associated with probability distributions that, when combined with Bayes’ theorem, allow us to perform real-time state estimation. The proposed methodology is tested on two cases of challenging flows generated by an accelerating elliptical plate and also a delta wing experiencing gusts. Results specifically indicate that the proposed approach is robust against the number of clusters, enabling state estimation with a significant order reduction, notably decreasing the computational cost while preserving estimation accuracy. Based on the present findings, the proposed data-driven approach can be employed for realistic state estimation in nonlinear systems where noise, sensor sparsity and nonlinearities represent a challenging scenario.

Funder

Air Force Office of Scientific Research

Publisher

The Royal Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cluster-based Bayesian approach for noisy and sparse data: application to flow-state estimation;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3