Bayesian inference of vorticity in unbounded flow from limited pressure measurements

Author:

Eldredge Jeff D.ORCID,Le Provost Mathieu

Abstract

We study the instantaneous inference of an unbounded planar flow from sparse noisy pressure measurements. The true flow field comprises one or more regularized point vortices of various strength and size. We interpret the true flow's measurements with a vortex estimator, also consisting of regularized vortices, and attempt to infer the positions and strengths of this estimator assuming little prior knowledge. The problem often has several possible solutions, many due to a variety of symmetries. To deal with this ill posedness and to quantify the uncertainty, we develop the vortex estimator in a Bayesian setting. We use Markov-chain Monte Carlo and a Gaussian mixture model to sample and categorize the probable vortex states in the posterior distribution, tailoring the prior to avoid spurious solutions. Through experiments with one or more true vortices, we reveal many aspects of the vortex inference problem. With fewer sensors than states, the estimator infers a manifold of equally possible states. Using one more sensor than states ensures that no cases of rank deficiency arise. Uncertainty grows rapidly with distance when a vortex lies outside of the vicinity of the sensors. Vortex size cannot be reliably inferred, but the position and strength of a larger vortex can be estimated with a much smaller one. In estimates of multiple vortices their individual signs are discernible because of the nonlinear coupling in the pressure. When the true vortex state is inferred from an estimator of fewer vortices, the estimate approximately aggregates the true vortices where possible.

Funder

Division of Chemical, Bioengineering, Environmental, and Transport Systems

Publisher

Cambridge University Press (CUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cluster-based Bayesian approach for noisy and sparse data: application to flow-state estimation;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3