Atmospheric angular momentum fluctuations, length-of-day changes and polar motion

Author:

Abstract

Variations in the distribution of mass within the atmosphere and changes in the pattern of winds, particularly the strength and location of the major mid-latitude jet-streams, produce fluctuations in all three components of the angular momentum of the atmosphere on timescales upwards of a few days. In a previous study (Hide et al . 1980) it has been shown that variations in the axial component of atmospheric angular momentum during the Special Observing Periods in 1979 of the First GARP Global Experiment (FGGE, where GARP is the Global Atmospheric Research Program) are well correlated with changes in length-of-day. This would be expected if the total angular momentum of the atmosphere and ‘solid’ Earth were conserved on short timescales (allowing for lunar and solar effects) but not if angular momentum transfer between the Earth’s liquid core and solid mantle, which is accepted to be substantial and even dominant on timescales upwards of several years, were significant on timescales of weeks or months. Fluctuations in the equatorial components of atmospheric angular momentum should contribute to the observed wobble of the instantaneous pole of the Earth’s rotation with respect to the Earth’s crust, but this has not been shown conclusively by previous studies. In this paper we re-examine some aspects of the underlying theory of non-rigid body rotational dynamics and angular momentum exchange between the atmosphere and solid Earth. Since only viscous or topographic coupling between the atmosphere and solid Earth can transfer angular momentum, no atmospheric flow that everywhere satisfied inviscid equations (including, but not solely, geostrophic flow) could affect the rotation of a spherical solid Earth. Currently available meteorological data are not adequate for evaluating the usual wobble excitation functions accurately, but we show that partial integration leads to an expression involving simpler functions ─ here called ‘equatorial angular momentum functions’ ─ which can be reliably evaluated from available meteorological data. The length-of-day problem is treated in terms of a similar ‘axial angular momentum function’ ; and ‘effective angular momentum functions’ are defined in order to allow for rotational and surface loading deformation of the Earth. Daily values of these atmospheric angular momentum functions have been calculated from the ‘initialized analysis global database’ of the European Centre for Medium-Range Weather Forecasts (ECMWF). They are presented for the period 1 January 1981─30 April 1982, along with the corresponding astronomically observed changes in length-of-day and polar motion, published by the Bureau International de l’Heure (BIH). Changes in length-of-day during this period can be accounted for almost entirely by angular momentum exchange between the atmosphere and solid Earth, and the existence of a persistent fluctuation in this exchange, with a timescale of about 7 weeks, is confirmed. We also demonstrate that meteorological phenomena provide an important contribution to the excitation of polar motion. Our work offers a theoretical basis for future routine determinations of atmospheric angular momentum fluctuations for the purposes of meteorological and geophysical research, including the assessment of the extent to which movements in the solid Earth associated with very large earthquakes contribute to the excitation of the Chandlerian wobble.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference35 articles.

1. Brosche P. & Siindermann J. (eds) 1 9 8 2 pages.) Berlin: Springer-Verlag. T id a l friction and the E arth's rotation II. (345

2. Bureau International de l 'Heure (B IH ) A n n u a l reports for 1977-1980 and Circulars D 172-187. Paris.

3. Chambers J . Miqueu M. & Norris B. 1 9 8 1 User guide to E C M W F data bank Technical Note E uropean Centre fo r M edium -R ange Weather Forecasts Reading U .K .

4. Feissel M. & Gambis D. 1 9 8 0 C.r. hebd. Seanc.Acad. Sci. P aris B 291 271-273.

Cited by 455 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3