Advancing polar motion prediction with derivative information

Author:

Michalczak Maciej1ORCID,Ligas Marcin1ORCID,Belda Santiago2,Ferrándiz José M.2ORCID,Modiri Sadegh3

Affiliation:

1. Department of Integrated Geodesy and Cartography, Faculty of Geo-Data Science, Geodesy, and Environmental Engineering , AGH University of Krakow , Krakow , Poland

2. UAVAC, Department of Applied Mathematics , Universidad de Alicante , Carretera San Vicente del Raspeig s/n, 03690 , Alicante , Spain

3. Department Geodesy , Federal Agency for Cartography and Geodesy (BKG) , 60322 Frankfurt am Main , Germany

Abstract

Abstract Earth Orientation Parameters (EOP) are essential for monitoring Earth’s rotational irregularities, impacting satellite navigation, space exploration, and climate forecasting. This study introduces a hybrid prediction model combining least-squares (LS) and vector autoregression (VAR) to improve Earth’s Pole Coordinates (x, y) forecast accuracy. Using daily sampled IERS EOP 20 C04 data from 2013 to 2023, we conducted 1,000 yearly random trials, performing 48 forecasts per year. Our method evaluates six data combinations, including primary variables (x, y) and their derivatives ( x ̇ , y ̇ $\dot{x},\dot{y}$ ). Results show a systematic improvement in prediction accuracy, especially for ultra-short-term forecasts (10 days into future), with derivative information stabilizing the solutions. The best-performing combination ( x , y , x ̇ , y ̇ $x,y,\dot{x},\dot{y}$ ) achieved a mean absolute prediction error (MAPE) reduction (with respect to the reference data combination – x, y) of up to 8 % for the y and 7 % for the x over a whole 30-day forecast horizon. These findings highlight the effectiveness of incorporating derivatives of polar motion time series into prediction procedure.

Funder

Generalitat Valenciana

Ministerio de Ciencia e Innovación

“Excellence initiative – research university” for the AGH University of Krakow

The European Union-NextGenerationEU

Statutory research grant at the Department of Integrated Geodesy and Cartography, AGH University of Krakow

Publisher

Walter de Gruyter GmbH

Reference22 articles.

1. Barnes, R, Hide, R, White, A, Wilson, C. Atmospheric angular momentum fluctuations, length-of-day changes and polar motion. Proc Roy Soc Lond A Math Phys Sci 1983;387:31–73.

2. Seitz, F, Schuh, H. Earth rotation. Sciences of geodesy-I: advances and future directions. Heidelberg: Springer; 2010:185–227 pp.

3. Fodor, C, Heinkelmann, R, Schuh, H, Varga, P. On the mutual interrelation between earth rotation and earthquake activity. In: Proceedings, journees 2019 “astrometry, earth rotation and reference systems in the Gaia era”. Paris, France; 2019:85–90 pp.

4. Ferrándiz, JM, Modiri, S, Belda, S, Barkin, M, Bloßfeld, M, Heinkelmann, R, et al.. Drift of the earth’s principal axes of inertia from GRACE and satellite laser ranging data. Rem Sens 2020;12:314. https://doi.org/10.3390/rs12020314.

5. Modiri, S. On the improvement of earth orientation parameters estimation: using modern space geodetic techniques. Germany: Technische Universitaet Berlin; 2021.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3