Contributions of core, mantle and climatological processes to Earth’s polar motion

Author:

Kiani Shahvandi MostafaORCID,Adhikari SurendraORCID,Dumberry MathieuORCID,Modiri SadeghORCID,Heinkelmann Robert,Schuh Harald,Mishra Siddhartha,Soja BenediktORCID

Abstract

AbstractEarth’s spin axis slowly moves relative to the crust over time. A 120-year-long record of this polar motion from astronomical and more modern geodetic measurements displays interannual and multidecadal fluctuations of 20 to 40 milliarcseconds superimposed on a secular trend of about 3 milliarcseconds per year. Earth’s polar motion is thought to be driven by various surface and interior processes, but how these processes operate and interact to produce the observed signal remains enigmatic. Here we show that predictions made by an ensemble of physics-informed neural networks trained on measurements to capture geophysical processes can explain the main features of the observed polar motion. We find that glacial isostatic adjustment and mantle convection primarily account for the secular trend. Mass redistribution on the Earth’s surface—for example, ice melting and global changes in water storage—yields a relatively weak trend but explains about 90% of the interannual and multidecadal variations. We also find that core processes contribute to both the secular trend and fluctuations in polar motion, either due to variations in torque at the core–mantle boundary or dynamical feedback of the core in response to surface mass changes. Our findings provide constraints on core–mantle interactions for which observations are rare and global ice mass balance over the past century and suggest feedback operating between climate-related surface processes and core dynamics.

Publisher

Springer Science and Business Media LLC

Reference63 articles.

1. Lambeck, K. The Earth’s Variable Rotation: Geophysical Causes and Consequences (Cambridge Univ. Press, 1980).

2. Gross, R. S. Earth rotation variations-long period. Treatise Geophys. 3, 239–294 (2007).

3. Petit, G. & Luzum, B. IERS Technical Note 36 (IERS, 2010).

4. Gross, R. S. The excitation of the Chandler wobble. Geophys. Res. Lett. 27, 2329–2332 (2000).

5. Barnes, R. T. H., Hide, R., White, A. A. & Wilson, C. A. Atmospheric angular momentum fluctuations, length-of-day changes and polar motion. Proc. R. Soc. A 387, 31–73 (1983).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3