Revisiting the Excitation of Free Core Nutation

Author:

Kiani Shahvandi Mostafa1ORCID,Schindelegger Michael2ORCID,Börger Lara2ORCID,Mishra Siddhartha3ORCID,Soja Benedikt1ORCID

Affiliation:

1. Institute of Geodesy and Photogrammetry ETH Zurich Zurich Switzerland

2. Institute of Geodesy and Geoinformation University of Bonn Bonn Germany

3. Seminar for Applied Mathematics, Department of Mathematics, and ETH AI Center ETH Zurich Zurich Switzerland

Abstract

AbstractEarth possesses a Poincaré mode called Free Core Nutation (FCN) due to the misalignment of the rotation axes of the mantle and fluid outer core. FCN is the primary signal in the observations of Celestial Pole Offsets (CPO) and maintained by geophysical mechanisms that are yet to be understood. Earlier studies suggested an origin in Atmospheric Angular Momentum (AAM)—and to a lesser degree Oceanic Angular Momentum (OAM)—but discrepancies between these geophysical excitations and the geodetic (CPO‐based) excitation were too large to reach definite conclusions. Here we use newly calculated, 3‐hourly AAM and OAM series for the 1994–2022 period, in conjunction with the latest CPO series from the International Earth Rotation and Reference Systems Service (IERS 20 C04 series), to demonstrate a markedly lower power ratio (4.6) of geophysical over geodetic excitation at the FCN frequency compared to previous works (ratio 10). Among all excitation sources, the AAM pressure term exhibits the highest coherence (0.56) and correlation (0.48) with the geodetic excitation, whereas the coherence with OAM is smaller by a factor of 3. Similar analyses using existing angular momentum series give comparable, albeit smaller coherence and correlation results. We attribute the relevant AAM pressure term signal to Northern Hemispheric landmasses and further show consistent temporal variations in the amplitude of geophysical and geodetic excitations around the FCN band. Our results thus corroborate evidence for large‐scale atmospheric mass redistribution to be the main cause of continuous FCN excitation.

Funder

Deutsche Forschungsgemeinschaft

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3