An Efficient Coding Network Based Feature Extraction with Support Vector Machine Based Classification Model for CT Lung Images

Author:

Oliver A. Sheryl,Anuradha M.,Justus J. Jean,Bellam Kiranmai,Jayasankar T.

Abstract

Lung cancer is a serious illness affects people all over the globe. To increase the survival rate of patients affected by lung cancer, in advance recognition of lung cancer with effective treatments is important. This study introduces a new deep learning (DL) based feature extraction and classification technique for CT lung images. A DL model using Coding Network (CN) is presented for the extraction of high-level features and classical features. Initially, the convolution neural network is trained as a coding network and the actual pixels are coded into feature vectors for representing the high-level concepts for classification. Next, an extraction of chosen classical features takes place depending upon background knowledge of lung CT images. In addition, an automatic feature fusion takes place to avoid annoying parameter choice. Besides, support vector machine (SVM) model is employed for classify CT lung images in an effective way. For experimentation, a benchmark dataset is utilized to appraise the outcome of the presented CN-SVM model and is validated under several dimensions.

Publisher

American Scientific Publishers

Subject

Health Informatics,Radiology Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3