Models of Artificial Intelligence-Assisted Diagnosis of Lung Cancer Pathology Based on Deep Learning Algorithms

Author:

Chen Su1ORCID

Affiliation:

1. The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510030, Guangdong, China

Abstract

In this article, in order to explore the application of a diagnosis system for lung cancer, we use an auxiliary diagnostic system to predict and diagnose the good and evil attributes of chest CT pulmonary nodules. This research improves the new diagnosis method based on the convolutional neural network (CNN) and the recurrent neural network (RNN) and combines the dual effects of the two algorithms to process the classification of benign and malignant nodules. By collecting H-E-stained pathological slices of 652 patients' lung lesions from two hospitals between January 2018 and January 2019, the output results of the improved 3D U-net system and the consistent results of two-person reading were compared. This article analyzes the sensitivity, specificity, positive flammability rate, and negative flammability rate of different lung nodule detection methods. In addition, the artificial intelligence system’s and the radiologist's judgment results of benign and malignant pulmonary nodules are used to draw ROC curves for further analysis. The improved model has an accuracy rate of 92.3% for predicting malignant lung nodules and an accuracy rate of 82.8% for benign lung nodules. The new diagnostic method using the convolutional neural network and the recurrent neural network can be very effective for improving the accuracy of predicting lung cancer diagnosis. It can play a very effective role in the disease prediction of lung cancer patients, thereby improving the treatment effect.

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3