Guided wave signal‐based sensing and classification for small geological structure

Author:

Sun Hongyu1ORCID,Song Jiao1,Zhou Shanshan2,Liu Qiang1,Lu Xiang1,Qi Mingming3

Affiliation:

1. College of Electronic and Information Engineering Shandong University of Science and Technology Qingdao China

2. Ji'nan Special Equipment Inspection Research Institute Jinan China

3. School of Data Science and Artificial Intelligence Wenzhou University of Technology Wenzhou China

Abstract

AbstractSensing, Computing and Communication Integration (SC2) is widely believed as a new enabling technology. A non‐negative tensor sparse factorisation (NTSF) algorithm based on tensor analysis is proposed for sensing and classification of Small Geological Structure in coal mines. Utilising this method, advanced detection of geological anomalies hidden in coal seams was achieved. The morphological properties of geological anomalies in coal seams and the propagation characteristics of guided waves were first thoroughly studied. A three‐dimensional (3D) medium geometry model was developed for a complicated coal seam with Goaf, collapse column, scouring zone, and tiny fault based on COMSOL Multiphysics. On this model, the third‐order tensors data was constructed. Then, the TUCKER‐based NTSF algorithm was employed for feature extraction and classification. To achieve multi‐dimensional feature, the two‐dimensional data in the form of a matrix is collected, and a multiplicative update method is introduced to update the algorithm iteratively. Finally, the Support Vector Machine (SVM) multi‐classifier with Gaussian radial basis kernel function is selected for classification of Small Geological Structure. The experimental results show that the classification accuracy based on the NTSF and SVM is as high as 97.33%, which demonstrates that the proposed algorithm is suitable for Sensing and Classification of Small Geological Structure in coal mines.

Funder

Natural Science Foundation of Shandong Province

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3