Affiliation:
1. College of Electronic and Information Engineering Shandong University of Science and Technology Qingdao China
2. Ji'nan Special Equipment Inspection Research Institute Jinan China
3. School of Data Science and Artificial Intelligence Wenzhou University of Technology Wenzhou China
Abstract
AbstractSensing, Computing and Communication Integration (SC2) is widely believed as a new enabling technology. A non‐negative tensor sparse factorisation (NTSF) algorithm based on tensor analysis is proposed for sensing and classification of Small Geological Structure in coal mines. Utilising this method, advanced detection of geological anomalies hidden in coal seams was achieved. The morphological properties of geological anomalies in coal seams and the propagation characteristics of guided waves were first thoroughly studied. A three‐dimensional (3D) medium geometry model was developed for a complicated coal seam with Goaf, collapse column, scouring zone, and tiny fault based on COMSOL Multiphysics. On this model, the third‐order tensors data was constructed. Then, the TUCKER‐based NTSF algorithm was employed for feature extraction and classification. To achieve multi‐dimensional feature, the two‐dimensional data in the form of a matrix is collected, and a multiplicative update method is introduced to update the algorithm iteratively. Finally, the Support Vector Machine (SVM) multi‐classifier with Gaussian radial basis kernel function is selected for classification of Small Geological Structure. The experimental results show that the classification accuracy based on the NTSF and SVM is as high as 97.33%, which demonstrates that the proposed algorithm is suitable for Sensing and Classification of Small Geological Structure in coal mines.
Funder
Natural Science Foundation of Shandong Province
Publisher
Institution of Engineering and Technology (IET)
Subject
Electrical and Electronic Engineering,Signal Processing