Key genetic elements and regulation systems in methicillin-resistant Staphylococcus aureus

Author:

Hao Haihong1,Dai Menghong1,Wang Yulian1,Huang Lingli1,Yuan Zonghui2

Affiliation:

1. National Reference Laboratory of Veterinary Drug Residues (HZAU) & MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei 430070, China

2. National Reference Laboratory of Veterinary Drug Residues (HZAU) & MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei 430070, China.

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA), popularly known as a type of superbug, has been a serious challenge for animal and human health. S. aureus has developed methicillin resistance mainly by expression of β-lactamase and PBP2a, which is regulated by the blaZ–blaI–blaR1 and mecA–mecI–mecRI systems. Other genetic elements, including murE and femA, also participate in expression of methicillin resistance, but the mechanism remains unclear. The evolution of the staphylococcal cassette chromosome mec determines the epidemiological risk of MRSA. The plasmid-located gene cfr might contribute to multiresistance and transmission of MRSA. Some virulence factors, including Panton–Valentine leukocidin, phenol-soluble modulin, arginine catabolic mobile element and other toxin elements enhance the pathogenesis and fitness of MRSA. Two-component regulation systems (agr, saeRS and vraRS) are closely associated with pathogenesis and drug resistance of MRSA. The systematic exploration of key genetic elements and regulation systems involved in multidrug resistance/pathogenesis/transmission of MRSA is conclusively integrated into this review, providing fundamental information for the development of new antimicrobial agents and the establishment of reasonable antibiotic stewardship to reduce the risk of this superbug.

Publisher

Future Medicine Ltd

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3