Affiliation:
1. School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX
2. Pharmaceutical Microbiology at the School of Pharmacy.
Abstract
Staphylococcus aureus is a major pathogen both within hospitals and in the community. Methicillin, a β-lactam antibiotic, acts by inhibiting penicillin-binding proteins (PBPs) that are involved in the synthesis of peptidoglycan, an essential mesh-like polymer that surrounds the cell. S. aureus can become resistant to methicillin and other β-lactam antibiotics through the expression of a foreign PBP, PBP2a, that is resistant to the action of methicillin but which can perform the functions of the host PBPs. Methicillin-resistant S. aureus isolates are often resistant to other classes of antibiotics (through different mechanisms) making treatment options limited, and this has led to the search for new compounds active against these strains. An understanding of the mechanism of methicillin resistance has led to the discovery of accessory factors that influence the level and nature of methicllin resistance. Accessory factors, such as Fem factors, provide possible new targets, while compounds that modulate methicillin resistance such as epicatechin gallate, derived from green tea, and corilagin, provide possible lead compounds for development of inhibitors.
Cited by
295 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献