Affiliation:
1. School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
2. Tongchuan Center for Disease Control and Prevention, Tongchuan 727031, China
3. School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is responsible for skin and soft tissue infections with multi-resistance to many antibiotics. It is thus imperative to explore alternative antimicrobial treatments to ensure future treatment options. Nisin (NIS), an antibacterial peptide produced by Lactococcus lactis, was selected to combine with Oxacillin (OX), to evaluate the antimicrobial effect and potential mechanism against MRSA. The synergistic antimicrobial effect of OX and NIS was verified by Minimal Inhibitory Concentration (MIC) assays, checkerboard analysis, time-kill curve, biofilm producing ability, and mice skin infection model in vivo. For the potential synergistic antimicrobial mechanism, the microstructure and integrity change of MRSA cells were determined by Scanning and Transmission Electron Microscope (SEM and TEM), intracellular alkaline phosphatase activity and propidium iodide staining were assayed; And transcription of mecA, main gene of MRSA resistant to OX, were detected by qRT-PCR. The results showed NIS could restore the sensitivity of MRSA to OX and inhibit biofilm production; OX + NIS can make MRSA cell deform; NIS may recover OX sensitivity by inhibiting the transcription of mecA. In vivo, mice skin infection models indicate that OX + NIS can substantially alleviate MRSA infections. As a safe commercially available biological compound, NIS and the combination of antibiotics are worth developing as new anti-MRSA biomaterials.
Funder
National Natural Science Foundation of China
Key research and development program of Shaanxi Province
The Fundamental Research Funds for the Central Universities
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献