Damage-Free Ion Beam Doping of Carbon During Molecular Beam Epitaxy of GaAs

Author:

Makita Yunosuke,Iida Tsutomu,Kimura Shinji,Winter Stefan,Yamada Akimasa,Shibata Hajime,Obara Akira,Niki Shigeru,Tsai Yushin,Uekusa Shin-ichiro

Abstract

ABSTRACTRecently, we introduced various acceptor impurities into MBE-grown ultra-pure GaAs by conventional high-energy ion implantation and found many novel shallow emissions associated with acceptor-acceptor pairs. Most of these emissions were easily quenched by extremely small amount of residual donor atoms which were unintentionally introduced during doping processes. For the interpretation of impurity effects, the usage of mass-separated atom as dopant source was strongly suggested. Along this consideration, we developed combined ion beam and molecular beam epitaxy (CIBMBE) technology, in which damage-free doping with high mass purity (M/ΔM=100) is expected to be possible. We here present the results of low-energy (100 eV) carbon ion doping using CIBMBE method. Samples were prepared asa function of growth temperature (Tg=400-700°C) and ion beam current. Net hole concentration, |NA-ND| as high as ~1×1020 cm-3 was obtained in as-grown samples. In 2K photoluminescence spectra, emissions due to acceptor-acceptor pairs exhibit specific energy shift with growing |NA-ND|. Results indicate that carbon doping can be made efficiently even at Tg as low as 500°C without any post heat treatment. These results also tell that by CIBMBE method no serious radiation damages are produced and the undesired impurity contamination can be considerably suppressed.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3