Titanium Silicidation and Secondary Defect Annihilation in ION Beam Processed Sige Layers

Author:

Larsen K. Kyllesbech,La Via F.,Lombardo S.,Raineri V.,Donaton R. A.,Campisano S. U.

Abstract

AbstractThe secondary defect annihilation by one- and two-step titanium silicidation in SiGe layers, formed by high dose Ge implantation, has been studied systematically as a function of the Ge fluence, implantation energy, silicide thickness, and silicide process conditions. In all cases the Ti thickness was kept below 20 nm, resulting in very thin Ti silicide layers typically less than 40 nm. The silicide phase was inspected by x-ray diffraction and transmission electron diffraction. Channelling Rutherford backscattering spectrometry and transmission electron microscopy were used to follow the end of range dislocation loop annihilation as a function of the silicide process conditions. The end of range loop annealing and the influence of silicidation is presented in this paper for Ge fluences above 3×1015 cm−2 and energies ranging from 70 keV to 140 keV. A model based on loop coarsening is presented which describes the observed loop annihilation behaviour.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3