Author:
Xu Yuhuan,Ou Shengquan,Tu K.N.,Zeng Kejun,Dunne Rajiv
Abstract
The most frequent cause of failure for wireless, handheld, and portable consumer electronic products is an accidental drop to the ground. The impact may cause interfacial fracture of ball-grid-array solder joints. Existing metrology, such as ball shear and ball pull tests, cannot characterize the impact-induced high speed fracture failure. In this study, a mini-impact tester was utilized to measure the impact toughness and to characterize the impact reliability of both eutectic SnPb and SnAgCu solder joints. The annealing effect at 150 °C on the impact toughness was investigated, and the fractured surfaces were examined. The impact toughness of SnAgCu solder joints with the plating of electroless Ni/immersion Au (ENIG) became worse after annealing, decreasing from 10 or 11 mJ to 7 mJ. On the other hand, an improvement of the impact toughness of eutectic SnPb solder joints with ENIG was recorded after annealing, increasing from 6 or 10 to 15 mJ. Annealing has softened the bulk SnPb solder so that more plastic deformation can occur to absorb the impact energy.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献