A defect model for ion-induced crystallization and amorphization

Author:

Jackson K. A.

Abstract

Extensive experimental investigations have been reported on the ion-induced motion of the interface between the crystalline and amorphous phases of silicon. The crystal grows into the amorphous phase at low ion fluxes and high temperatures. The amorphous phase grows into the crystal at high ion fluxes and low temperatures. The experimental observations are shown to fit a model based on a single defect. The concentration of this defect decays by binary recombination, this is, two of the defects annihilate one another. The model accounts for the linear relationship between interface motion and reciprocal temperature, for the Arrhenius temperature dependence of the flux at which no interface motion occurs, and for the temperature independence of the crossover frequency observed in beam pulsing experiments. The defect on which this model is based has a motion energy of 1.2 eV. Assuming that the same defect is also responsible for thermal recrystallization of the amorphous phase gives a formation energy of 1.5 eV for the defect. The defect is believed to be a dangling bond in the amorphous phase.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 178 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3