The Role of Ions for the Deposition of Hydrocarbon Films, investigated by In-Situ Ellipsometry

Author:

Von Keudell A.

Abstract

AbstractThe growth mechanisms for the deposition of hydrocarbon films (C:H-films) from a methane electron cyclotron resonance (ECR) plasma are investigated by means of in-situ ellipsometry. Ion bombardment during plasma-enhanced chemical vapor deposition of hydrocarbon films mainly governs the properties of the films and the total growth rate. the role of ions for the growth rate and the film properties is discussed in this paper. Films were deposited with varying RF-bias, resulting in a DC self-bias ranging from floating potential up to 100 V. the ion-induced modification of the film properties was investigated by a new technique using a double layer consisting of a polymer-like film with low optical absorption and a hard carbon film with high absorption on top. the interface between these layers was analysed after deposition by a layer-by-layer etching in an oxygen plasma at floating potential. From these data it is possible to determine with high accuracy the range of the ion-induced modification of the optical properties in the underlying polymer-like film. the thickness of this modified layer ranges from 6 Å at 30 V self-bias to 40 Å at 100 V self-bias, which is consistent with the range of hydrogen ions in polymerlike films as calculated by the computer code TRIM.SP.Based on the presented results, the growth of C:H-films and the resulting film properties can be modelled by the growth at activated sites at the film surface. these activated sites are represented by dangling bonds, induced by the ion bombardment. they also show up in the ellipsometric results during the deposition of C:H-films by a change of the optical response of the film surface.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3