Silicon Induced Mixing of AlGaAs Superlattices – Behavior and Mechanisms

Author:

Schwarz S. A.,Venkatesan T.,Mei P.

Abstract

ABSTRACTMixing (or interdiffusion) of AlGaAs superlattice layers is greatly accelerated in the presence of Si doping. We have employed secondary ion mass spectrometry (SIMS) to monitor the depth dependence of the Al diffusion coefficient as well as the Si diffusion profile. Our results reveal unusually complex dependences on implantation and annealing conditions. To isolate the effects of chemistry and lattice damage, several structures were grown by molecular beam epitaxy (MBE) containing plateaus of Si concentration. The doping dependence and activation energy of Al diffusion were then evaluated in as-grown samples and in samples damaged by MeV Ga ion bombardment. To further elucidate the process, samples containing single or multiple implants of various dopants and impurities were examined. Microscopic and electrical characterizations were also performed. Al diffusion was found to be strongly inhibited by lattice damage and by very high Si doping levels. The Al diffusion coefficient has a high power law dependence on Si concentration while its activation energy is relatively unaffected by doping or lattice damage. A wide range of experimental and theoretical mixing studies are surveyed. Mixing models invoking Si pairs, divacancies, Fermi level arguments, and other mechanisms are critically assessed.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3