GaN Decomposition in Ammonia

Author:

Koleske D.D.,Wickenden A.E.,Henry R.L.

Abstract

GaN decomposition is studied as a function of pressure and temperature in mixed NH3 and H2 flows more characteristic of the MOVPE growth environment. As NH3 is substituted for the 6 SLM H2 flow, the GaN decomposition rate at 1000 °C is reduced from 1×1016 cm−2 s−1 (i.e. 9 monolayers/s) in pure H2 to a minimum of 1×1014 cm−2 s−1 at an NH3 density of 1×1019 cm−3. Further increases of the NH3 density above 1×1019 cm−3 result in an increase in the GaN decomposition rate. The measured activation energy, EA, for GaN decomposition in mixed H2 and NH3 flows is less than the EA measured in vacuum and in N2 environments. As the growth pressure is increased under the same H2 and NH3 flow conditions, the decomposition rate increases and the growth rate decreases with the addition of trimethylgallium to the flow. The decomposition in mixed NH3 and H2 and in pure H2 flows behave similarly, suggesting that surface H plays a similar role in the decomposition and growth of GaN in NH3.

Publisher

Springer Science and Business Media LLC

Subject

General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3