Author:
Ferlauto Andre S.,Rovira Pablo I.,Koval Randy J.,Wronski Christopher R.,Collins Robert W.
Abstract
ABSTRACTThe microstructural and phase evolution of silicon films (Si:H) prepared by low temperature (200°C) rf plasma-enhanced chemical vapor deposition (PECVD) with hydrogen dilution of silane has been studied using real time spectroscopic ellipsometry (RTSE) and atomic force microscopy (AFM). Both RTSE and AFM support the concept of an evolutionary phase diagram that describes different regimes of bulk layer thickness and H2-dilution ratio R within which predominantly amorphous silicon (a-Si:H) and microcrystalline silicon (μc-Si:H) films are obtained. In this study, the evolutionary phase diagram has been extended to identify four separate growth regimes: (i) a-Si:H with a smooth surface and a stable roughness layer thickness, (ii) a-Si:H with a rougher surface and an unstable roughness layer thickness, (iii) mixed-phase (a+μc)-Si:H, and (iv) fully-coalesced (single-phase) μc-Si:H. Based on this framework, the effect of increased rf power to achieve higher deposition rates in the rf PECVD process was investigated.
Publisher
Springer Science and Business Media LLC
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献