Spectroscopic ellipsometry investigation to study the microstructure evolution in boron-doped amorphous silicon films as a result of hydrogen dilution

Author:

Kanneboina VenkannaORCID,Agarwal Pratima

Abstract

AbstractSpectroscopic ellipsometry (SE) is a sophisticated technique to find the optical constants, bandgap and microstructure of thin layer. SE is used to study the microstructure evolution in boron-doped amorphous silicon films for different hydrogen flow rates (HFR). Spectral dependance of the real and imaginary parts of pseudo-dielectric constant is obtained at a fix angle of incidence (70°). Tauc–Lorentz (T–L) optical model is used to estimate the thickness, bandgap, optical constant and thickness of the top rough layer of the films, whereas Bruggeman effective medium approximation (BEMA) is applied to find the volume fractions of amorphous, crystalline and void phases. A shift in peak position from 3.65 to 4.1 eV in dielectric constant is observed as the hydrogen flow rate is increased from 30 to 70 SCCM. This is accompanied by the emergence of a peak near 3.4 eV, which belongs to the direct bandgap of c-Si. These observations suggest an improvement in microstructure of the films deposited at higher HFR. It is also supported by the observation that films deposited at higher HFR have higher magnitude of amplitude parameter and less broadening. Fitting of experimental data using BEMA also suggests that crystalline fraction increases and amorphous fraction decreases at higher HFR. The bandgap and thickness of top rough layer estimated from SE data are matched well with those obtained using transmission data and atomic force microscopy.

Funder

Department of Science and Technology (DST), India

Defence Research and Development Organization (DRDO), India

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3