Engineering Dislocation Dynamics in Inx(AlyGa1−y)1−xP Graded Buffers Grown on Gap by Movpe

Author:

Kim A.Y.,Fitzgerald E.A.

Abstract

AbstractTo engineer high-quality Inx(AlyGa1−y)1−x P/Ga1−xP graded buffers, we have explored the effects of graded buffer design and MOVPE growth conditions on material quality. We demonstrate that surface roughness causes threading dislocation density (TDD) to increase with continued grading: dislocations and roughness interact in a recursive, escalating cycle to form pileups that cause increasing roughness and dislocation nucleation. Experiments show that V/III ratio, temperature, and grading rate can be used to control dislocation dynamics and surface roughness in InxGa1−xP graded buffers. Control of these parameters individually has resulted in x = 0.34 graded buffers with TDD = 5 × 106 cm−2and roughness = 15 nm and a simple optimization has resulted in TDD = 3 × 106 cm −2and roughness = 10 un. Our most recent work has focused on more sophisticated optimization and the incorporation of aluminum for x > 0.20 to keep the graded buffer completely transparent above 545 nm. Given our results, we expect to achieve transparent, device-quality Inx(AlyGa1−y)1−x P/GaP graded buffers with TDD < 106 cm−2

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3