Deep Level Generation-Annihilation in Nitrogen Doped FZ Crystals

Author:

Abe T.,Harada H.,Ozawa N.,Adomi K.

Abstract

ABSTRACTNitrogen atoms exist in silicon as non-reactive nitrogen molecules. This is concluded from two I-R absorption experiments: one is the nitrogen isotope effects on N- N pairs and the other is silicon isotope shifts at 10 K. Intrinsic resistivities (over 20 K ohm-cm) are obtained by annealing at 1000°C, 1 min. in N2 in both p- and n-type nitrogen doped thin wafers. Resistivity increases are due to deep- level generations: 0.66 eV above the valence band for p-type and mainly 0.44 eV below the conduction band for n-type material. These deep levels are considered to be formed by nitrogen pairs and divacancies which are incorporated during growth. Since divacancies are easy to out diffuse to the wafers surface, the deep levels are also irreversibly removed. Diffusion coefficient of Si intersititialswici'ch are annihilated with divacancies in the lattice are calculated as 6×10−6cm2/s and 2×10−6cm2/s at 900°C and 1000°C respectively. Migration energy of Si interstitials is about 4.5 eV.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3