Spalling of intermetallic compounds during the reaction between lead-free solders and electroless Ni-P metallization

Author:

Sohn Y.C.,Yu Jin,Kang S.K.,Shih D.Y.,Lee T.Y.

Abstract

Intermetallic compound (IMC) spalling from electroless Ni-P film was investigated with lead-free solders in terms of solder-deposition methods (electroplating, solder paste, and thin foil), P content in the Ni-P film (4.6, 9, and 13 wt% P), and solder thickness (120 versus .200 μm). The reaction of Ni-P with Sn3.5Ag paste easily led to IMC spalling after 2-min reflow at 250 °C while IMCs adhered to the Ni-P layer after 10-min reflow with electroplated Sn or Sn3.5Ag. It has been shown that not only the solder composition but also the deposition method is important for IMC spalling from the Ni-P layer. The spalling increased with P content as well as with solder volume. Ni3Sn4 intermetallics formed as a needle-shaped morphology at an early stage and changed into a chunk-shape. Needle-shaped compounds exhibited a higher propensity for spalling than chunk-shaped compounds because many channels among the needle-shaped IMCs facilitated Sn penetration. A reaction between the penetrated Sn and the Ni3P layer formed a Ni3SnP layer and Ni3Sn4 IMCs spalled off the Ni3SnP surface. Dewetting of solder from the Ni3SnP layer, however, did not occur even after spalling of most IMCs.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3