Excess Carrier Lifetime Measurements for GaN on Sapphire Substrates with Various Doping Concentrations and Surface Conditions by the Microwave Photoconductivity Decay Method

Author:

Kato Masashi,Watanabe Hideki,Ichimura Masaya,Arai Eisuke

Abstract

ABSTRACTWe have measured excess carrier lifetimes in GaN with various doping concentrations and surface conditions by the microwave photoconductivity decay method. GaN samples were grown by metalorganic chemical vapor deposition (MOCVD) without intentional doping and with Si doping or Mg doping on a-face sapphire substrates. By using the microwave photoconductivity decay method, we obtained 1/e excess carrier lifetimes of larger than 50 μs for the Si doped and undoped GaN and of less than 10 μs for the Mg doped GaN. We changed surface conditions for the samples by the inductively coupled plasma (ICP) etching and investigated effects of surface conditions on the carrier recombination behavior. The ICP etching has negligible effects on carrier lifetime in the Si doped GaN. On the other hand, in the undoped GaN, the ICP etching lengthened the carrier lifetime compared with the as-grown sample. On the contrary, the ICP etching shortened the carrier lifetime in the Mg doped GaN. The ICP etching seems to form hole traps and recombination centers at GaN surfaces and thus the carrier lifetime became longer in the undoped GaN and shorter in the Mg doped GaN.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3