Electrical Characterization of Defects in GaAs Grown on Si by MBE

Author:

Chand N.,Fischer R.,Sergent A. M.,Lang D. V.,Cho A. Y.

Abstract

ABSTRACTWe show that MBE-grown GaAs on Si exhibits only a modest increase in the concentrations of the well-known electron traps typical of MBE-GaAs with no evidence for any new electron deep levels in the upper half of the bandgap in spite of the dislocations and other defects in the material. As shown by Au-GaAs Schottky contacts, the defects are unnoticeable when the device is forward biased but become very active in reverse biased condition, causing large leakage current and low breakdown voltage (although the device is still acceptable for many applications, especially FET's). The defects become more active after hydrogenation and more inactive after a post-growth rapid thermal annealing (RTA). Performance of devices made on thermally annealed GaAs on Si is comparable to those of GaAs on GaAs. Also, following the application of a large- current the device behavior improves, indicating a self-annealing action as a result of internal heating. The reverse current in the as-grown material shows a very weak temperature dependence, indicating its origin is not thermionic emission or carrier generation. It is speculated that a large part of the leakage current in the as-grown GaAs on Si is due to the defect assisted tunneling. After RTA, the average spacing between defect clusters increases, thus reducing the tunneling probability and tremendously improving the device characteristics.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3