Refinement of thermodynamic data on GaN

Author:

Jacob K.T.,Singh Shwetank,Waseda Y.

Abstract

Although GaN is one of the important electronic materials of this decade, thermodynamic data for this compound are not known with sufficient reliability. The limited information available is not internally consistent. Measured in this study are high-temperature heat capacities using a differential scanning calorimeter and Gibbs energies of formation employing a solid-state electrochemical technique. The solid-state cell was based on single-crystal CaF2 as the electrolyte and Ca3N2 as the auxiliary electrode to convert the nitrogen chemical potential established by the equilibrium between Ga and GaN into an equivalent fluorine potential. The heat capacity of GaN at ambient pressure can be represented by the equation: CoP / J mol−1 K−1 = 74.424 − 0.00106T + (46720/T2) − (685.9/T0.5), in the temperature range from 350 to 1075 K. The standard Gibbs energy of formation of GaN in the range from 875 to 1125 K can be expressed as: ΔfGo/ J mol−1 (±465) = −128,749 + 115.029 T. This corresponds to a decomposition temperature of 1119 ± 4 K for GaN in pure nitrogen at standard pressure. On the basis of these new measurements and a critical assessment of information that is available in the literature, a refined set of data for GaN in the temperature range from 298.15 to 1400 K is presented.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3