Structural characterization of damage in Si(100) produced by MeV Si+ ion implantation and annealing

Author:

El-Ghor M. K.,Holland O. W.,White C. W.,Pennycook S. J.

Abstract

Buried amorphous layers were produced by implantation of MeV Si+ ions in silicon single crystal at room temperature and liquid nitrogen temperature. The damage is characterized structurally both in the as-implanted condition and after post-implantation furnace annealing. Growth of the amorphous layer during room temperature implantation is found to occur by a layer-by-layer mechanism with relatively sharp interfacial transition regions. A wide region ahead of the buried amorphous region extending to the surface is observed to be free of any extended defects. Recrystallization of the damaged region during thermal annealing occurs by solid-phase epitaxial growth at both interfaces. A lower growth velocity is found at the upper interface, which is attributed to a higher hairpin dislocation density grown-in at this interface. Results of irradiation at liquid nitrogen temperature, on the other hand, show that nucleation and growth of the amorphous damage occurs over a wide region and is not confined to the interfacial region. This results in a very diffuse upper interface composed of a mixture of amorphous and crystalline phases. Substantial reordering is observed in this mixed-phase region after 400°C annealing, even though this temperature is too low for normal interfacial solid-phase epitaxial growth. Cross-sectional transmission electron microscopy, as well as Rutherford backscattering spectroscopy, were used in this study.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3