In-Situ Studies of Silicide Formation in Ti-Ta Bilayer Thin Films on Poly-Si

Author:

Özcan A. S.,Ludwig K. F.,Lavoie C.,Cabral C.,Harper J. M. E.

Abstract

AbstractWe have studied the formation of titanium silicides in the presence of an ultra-thin layer of Ta, interposed between Ti and Si. In-situ x-ray diffraction (XRD), resistance measurements and elastic light scattering were used to study the thin film reactions in real time during ramp anneals to 1000°C. On poly-Si substrates the Ta thickness was varied from 0 to 1.5 nm while the Ti thickness was held constant at ∼27 nm. The time-resolved XRD shows that the volume fraction of C40 and metal-rich silicide phases grows with increasing Ta layer thickness. Increased Ta layer thicknesses also delay the growth of the C49 disilicide phase to higher temperatures. Among the Ta thicknesses we examined, 0.3 nm is the most effective in lowering the C49-C54 transformation temperature. Films with Ta layers thicker than 0.5 nm do not completely transform into the C54 phase. The texture of the C54 phase is also sensitive to the Ta thickness. The C54 disilicide film is predominantly (010) textured for the Ti / 0.3 nm Ta sample. The final C54 texture is significantly different for Ta layers thinner or thicker than the optimal 0.3 nm. This suggests that the most effective thickness for lowering the C54 formation temperature is related to the development of a strong (010) texture. The possibility of a template effect by the C40 or metal-rich Ti5Si3 phases is also discussed on the basis of texture considerations.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3