Interfacial Microstructure and Joint Strength of Sn–3.5Ag–X (X = Cu, In, Ni) Solder Joint

Author:

Choi Won Kyoung,Kim Jong Hoon,Jeong Sang Won,Lee Hyuck Mo

Abstract

Interfacial phase and microstructure, solder hardness, and joint strength of Sn–3.5Ag–X (X = Cu, In, Ni; compositions are all in wt% unless specified otherwise) solder alloys were investigated. Considering the melting behavior and the mechanical properties, five compositions of Sn–3.5Ag–X solder alloys were selected. To examine the joint characteristics, they were soldered on under bump metallurgy isothermally at 250 °C for 60 s. Aging and thermal cycling (T/C) were also performed on the solder joint. The interfacial microstructure of the joint was observed by scanning electron microscopy. X-ray diffraction and energy dispersive x-ray analyses were made toidentify the type of solder phase and to measure compositions. Excessive growth of an interfacial intermetallic layer in the Sn–3.5Ag–6.5 In solder joint led to a brittle fracture. In the other four solder joints, ductile fractures occurred through the solder region and the solder hardness was closely related with the joint strength.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Microwave Hybrid Heating as an Alternative Method for Soldering—A Brief Review;Technological Advancement in Mechanical and Automotive Engineering;2022-08-09

2. Effect of temperature on the electrical conduction and dielectric behavior of solder;Journal of Materials Science: Materials in Electronics;2021-02-08

3. Growth behavior of intermetallic compounds in Fe/Sn diffusion couples;Journal of Materials Science: Materials in Electronics;2019-06-03

4. Intermetallic Growth Mechanism and Mechanical Properties of Post-Annealed SAC305 Solder Joints on Cu-Based Electrode Interfaces;Journal of Nanoscience and Nanotechnology;2019-03-01

5. Direct Active Soldering of PEO Coated and Uncoated AA6061 Aluminium Alloy;Advanced Materials Research;2018-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3