Ab initio study of the effect of 2D layer rippling on the electronic properties of 2D/H-terminated diamond (100) heterostructures

Author:

Mirabedini Pegah S.,Neupane Mahesh R.,Greaney P. AlexORCID

Abstract

AbstractWe report an ab initio study of the effect of rippling on the structural and electronic properties of the hexagonal Boron Nitride (hBN) and graphene two-dimensional (2D) layers and heterostructures created by placing these layers on the Hydrogen-terminated (H-) diamond (100) surface. Surprisingly, in graphene, rippling does not open a band gap at the Dirac point but does cause the Dirac cone to be shifted and distorted. For the 2D/H-diamond (100) heterostructures, a combined sampling and a clustering approach were used to find the most favorable alignment of the 2D layers. Heterostructures with rippled layers were found to be the most stable. A larger charge transfer was observed in the heterostructures with rippled hBN (graphene) than their planner counterparts. Band offset analysis indicates a Type-II band alignment for both the wavy and planar heterostructures, with the corrugated structure having stronger hole confinement due to the larger valence band offset between the hBN layer and the H-diamond (100) surface. Graphic abstract

Funder

Army Research Laboratory

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3