Ge-Related Interfacial Defects in Sige Alloy Structures

Author:

Macfarlane Patricia J.,Zvanut M. E.,Carlos W. E.,Twigg M. E.,Thompson P. E.

Abstract

AbstractThis paper reports etching results supporting the identification of the SG1 center as a germanium dangling bond defect at the interface between an oxide and crystalline SiGe. The presence of this defect is significant because, like an analogous center in Si-based systems, it may alter the operation of any microelectronic or micro-optical device which incorporates an interface between SiGe and an overlying oxide. The samples examined are oxygen implanted SiGe layers in which the SG1 center is believed to occur at the interface between oxide precipitates and SiGe. Because of the center's apparent relation to the oxide precipitates distributed through layers of the sample, a depth profile assists in confirming the interfacial nature of the defect. We obtain a depth profile by comparing electron paramagnetic resonance (EPR) spectra of samples etched to decreasing thickness. EPR spectra indicate that the SG1 center decreases with depth in a manner that when correlated to a cross sectional transmission electron micrograph confirms the association with SiO2 and supports its location at the SiGe/SiO2 precipitate interface.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3