Dopant Site Location in Dual-Implanted Gap using {111} Planar Channeling

Author:

Parikh N.R.,Kao C.T.,Lee D.R.,Muse J.,Swanson M. L.,Haynes T.E.,Venkatasubramanian R.,Timmons M.

Abstract

ABSTRACTPrevious studies have indicated that dual implantation can efficiently introduce group IV dopant onto selected sub-lattice sites in m-V compound semiconductors, thus enhancing electrical activation. We studied this phenomenon in GaP using Rutherford Backscattering Spectroscopy (RBS) to determine the lattice location of Sn atoms. We used single crystals of GaP (100) which had been implanted at 400° C with120 Sn+ following previously implanted69 Ga+ or 31P+. Energies were selected for euivalent projected ranges, and all species were implanted with doses of 1 × 1015 atoms/cm2 . Asymmetry in the angular scan of the {111} planar channel was then used to determine the sub-lattice location of the implanted Sn. RBS results indicated that for all implants Sn atoms were substituting Ga and P sites eually. However, Hall effect measurements gave p type conduction for GaP implanted with Sn alone, while those with prior implants of Ga or P resulted in n-type conduction. RBS and Hall effect results are explained by a vacancy complex model.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference10 articles.

1. Ion implantation in compound semiconductors–an approach based on solid state theory

2. 7 Swanson M.L. , Parikh N.R. , Sandhu G.S. , Frey E.C. , Zhang Z.H. , and Chu W.K. , Proceedings of MRS Symposium W, Fall 1988.

3. Dual implantation of Be+and F+in GaAs and AlxGa1−xAs

4. Preferential interaction of channelled particles in diatomic crystals

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3