Formation of Orthogonal Components of Input Signals in Digital Measuring Protection Elements with Correction of Dynamic Errors

Author:

Romaniuk F. A.1,Rumiantsev Yu. V.1,Rumiantsev V. Yu.1

Affiliation:

1. Belаrusian National Technical University

Abstract

Digital measuring elements in microprocessor protections of electrical installations are implemented mainly with the use of orthogonal components of input signals. To form orthogonal components in microprocessor protections, digital Fourier filters are most widely used, the action of which is al-ways inertial in transient modes. As a result, a dynamic error appears, changing over time and completely disappearing when a steady-state regime occurs. The dynamic error consists of amplitude and phase errors, which can significantly affect the functioning of digital measuring elements and create conditions for their excessive triggering during external short circuits and deceleration of triggering during internal short circuits. Therefore, it is advisable to compensate for the dynamic error, for which it is proposed to determine the amplitude and phase of the fundamental harmonic signal by specially formed orthogonal components. The proposed method of forming orthogonal components of the signal with compensation of dynamic amplitude and phase errors is based on the use of orthogonal components of the digital Fourier filter, followed by the determination of their samples of the final orthogonal components that coincide with the orthogonal components of Fourier in steady-state mode and shifted in phase relative to the latter in transient mode. The amplitude and phase of the signal with minimal dynamic phase errors are calculated from the samples of the final orthogonal components in the digital measuring element. In the dynamic modeling environment of MATLAB-Simulink-SimPowerSystems, a digital model is implemented, which includes a power system, a three-phase group of current transformers, a load, a short-circuit block, as well as a model of a digital measuring element implemented on the basis of the final orthogonal components. The operation of the digital model was checked using two types of test effects, viz. a sinusoidal signal with a frequency of 50 Hz, and a signal close to the real secondary current of a short-circuit current transformer. As a result of the calculations, it was found that digital measuring elements made on the basis of the proposed methodology made it possible to reduce the relative dynamic amplitude and phase errors by three to four times, as compared with the Fourier measuring element taken as a reference.

Publisher

Belarusian National Technical University

Subject

Energy Engineering and Power Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

Reference12 articles.

1. Schneerson E. M. (2007) Digital Relay Protection. Moscow, Energoatomizdat Publ. 549. (in Russian).

2. Schweitzer III E. O., Hou D. (1993) Filtering for Protective Relays. IEEE WESCANEX 93. Communications, Computers and Power in the Modern Enviroment. Conference Proceedings. IEEE, 15–23. https://doi.org/10.1109/wescan.1993.270548.

3. Romaniuk F. A., Rumiantsev V. Yu., Novash I. V., Rumiantsev Yu. V. (2019) Technique of Performance Improvement of the Microprocessor-Based Protection Measuring Element. Enеrgеtika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, 62 (5), 403–412. https://doi.org/10.21122/1029-7448-2019-62-5-403-412 (in Russian).

4. Romaniuk F. A., Rumiantsev V. Yu., Rumiantsev Yu. V., Kachenya V. S. (2020) Orthogonal Components Forming of the Microprocessor-Based Protection Input Signals. Enеrgеtika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, 63 (4), 328–339. https://doi.org/10.21122/1029-7448-2020-63-4-328-339 (in Russian).

5. Romaniuk F. A., Rumiantsev Yu. V., Rumiantsev V. Yu., Novash I. V. (2021) Improvement of Algorithm for Formation of Orthogonal Components of Input Quantities in Microprocessor Protection. Enеrgеtika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, 64 (2), 95–108. https://doi.org/10.21122/1029-7448-2021-64-295-108 (in Russian).

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Fast-Response Method for Determining the Amplitude of a Signal in Microprocessor Automation and Control Systems with Frequency Fluctuations;ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations;2024-02-13

2. Dynamic Properties of Remote Sensing Algorithm in Digital Resistance Elements;Science & Technique;2023-10-10

3. Principles for Implementation of Digital Power Direction Control in Microprocessor Current Protections;Science & Technique;2023-08-04

4. Symmetrical Components Digital Filters for Microprocessor-Based Protection Input Signals;ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations;2023-02-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3