A Fast-Response Method for Determining the Amplitude of a Signal in Microprocessor Automation and Control Systems with Frequency Fluctuations

Author:

Rumiantsev Yu. V.1,Romaniuk F. A.1,Rumiantsev V. Yu.1

Affiliation:

1. Belarusian National Technical University

Abstract

In microprocessor automation and control systems, the amplitude (effective) values of the fundamental harmonic of the input signals are widely used as information parameters of the controlled quantities. They are most often determined by samples of one or a pair of orthogonal components of the signal, for the formation of which digital Fourier filters and their modifications are mainly used. At the rated frequency in the power system, these filters ensure reliable reception of the signal amplitude without additional error. If the frequency deviates from the rated one, the number of samples per signal period is not an integer and the discretization becomes asynchronous. As a result, a corresponding error appears in the amplitude of the signal, and its change becomes oscillating. With minor frequency fluctuations in the normal mode, the amplitude error is insignificant. However, in abnormal situations, the frequency can have significant variations. At the same time, in critical situations, failure of automation and control systems, as well as incorrect operation of their functional algorithms, cannot be excluded. Known methods for determining the amplitude of a signal with frequency fluctuations provide a solution to the existing problem, but they are characterized by a slow response. The proposed high-response method for determining the amplitude during frequency fluctuations is focused on using as initial information samples of instantaneous values of the cosine orthogonal component of the signal, which are formed using an appropriate digital Fourier filter. Based on these samples, the dynamic cosine and sine of the angle of one sample are calculated, the use of which in calculating the amplitude ensures its independence from frequency. Processing of the received amplitude with an amplifying element with a nonlinear coefficient makes it possible to achieve acceptable performance. The effectiveness of the proposed solution was evaluated by a computational experiment using a digital model implemented in the MATLAB-Simulink dynamic modeling environment. In this case, both sinusoidal input signals and complex ones, close to the real secondary signals of measuring transformers, were used as test actions. As a result of the research, it was found that the proposed method for determining the amplitude during frequency fluctuations has a performance at the level of a quarter of the period and provides effective elimination of frequency error both in load modes and in damage modes.

Publisher

Belarusian National Technical University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3