Symmetrical Components Digital Filters for Microprocessor-Based Protection Input Signals

Author:

Romaniuk F. A.1,Rumiantsev V. Yu.1,Rumiantsev Yu. V.1

Affiliation:

1. Belarusian National Technical University

Abstract

In microprocessor protections, measuring bodies are used that react to individual symmetrical components of signals or a combination of them. This makes the corresponding protection devices more sensitive. Of all the varieties of digital filters of symmetrical components, filters of the negative and zero sequences are mainly used. As for the known algorithms of their software implementation, it is advisable to use filters that form orthogonal components of the required sequence from orthogonal components of phase or phase-to-phase values of signals. Digital Fourier filters, characterized by inertia, are used as formers of the latter. For this reason, their transient modes are accompanied by the appearance of a dynamic error, which can significantly affect the functioning of filters of symmetrical components, worsening their properties. A significant reduction in this effect can be achieved by using shapers with correction of dynamic errors to isolate the orthogonal components of the input signals. They are based on non-recursive digital Fourier filters, the orthogonal components of which are subjected to software correction processing in order to obtain equivalent components characterized by fast-fading dynamic amplitude errors. Correction of the dynamic phase error is realized in the process of obtaining the resulting orthogonal components, which are a combination of Fourier components and calculated ones that have been estimated according to them. Based on the information about the amplitudes and current phases of the signals contained in the equivalent and resultant components, respectively, the resulting orthogonal components are formed, differing in minimal amplitude and phase errors in transient modes. According to these components, the orthogonal components of the signal of the negative and zero sequences in the corresponding filter are calculated. In the dynamic modeling environment of MATLAB-Simulink-SimPowerSystems, a digital model is implemented, which includes a power system, a three-phase group of current transformers, a load, a short-circuit block, as well as models of negative and zero sequence filters. The study of the functioning of these filters was carried out using two types of test actions, viz. a three-phase system of sinusoidal signals and a three-phase system of signals close to real secondary currents in short circuits. The results of the research have demonstrated that the developed digital filters of the negative and zero sequences have 1.1–1.4 times higher performance as compared with similar Fourier filters accepted as reference and that they are distinguished by improved magnitudes of dynamic indicators.

Publisher

Belarusian National Technical University

Subject

Energy Engineering and Power Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

Reference12 articles.

1. Ovcharenko N. I. (1989) Analog and Digital Elements of Automatic Devices of Power Systems. Мoscow, Energoatomizdat Publ. 320 (in Russian).

2. Romaniuk F. A. (1998) Formation of Symmetric Components of Input Signals in Microprocessor Protections. Enеrgеtika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, (5), 13–19 (in Russian).

3. Fedoseev A. M. (1984) Relay Protection of Electric Power Systems. Relay Protection of Networks. Moscow, Energoatomizdat Publ. 520 (in Russian).

4. Schneerson E. M. (1984) Measuring Elements of Relay Protection Based on Microprocessor Structures. Moscow, Informelectro Publ. 92 (in Russian).

5. Schneerson E. M. (2007) Digital Relay Protection. Moscow, Energoatomizdat Publ. 549 (in Russian).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3