Orthogonal Components Forming of the Microprocessor-Based Protection Input Signals

Author:

Romaniuk F. A.1,Rumiantsev V. Yu.1,Rumiantsev Yu. V.1,Kachenya V. S.1

Affiliation:

1. Belarusian National Technical University

Abstract

The use of orthogonal components (OS) is the main direction of determining information parameters in microprocessor relay protection and automation of electric power systems. Most of the measuring devices used in modern protection and automation devices can be implemented using known operating systems. Digital non-recursive frequency filters based on discrete Fourier transform are used for OS selection. The main disadvantage of these filters is their low performance that exceeds the period of industrial frequency. For the construction of high-speed measuring devices, this time of establishing the true output signal is often unacceptable. The article proposes to form the equivalent signal OS in microprocessor defenses based on the values of the cosine and sine axes of the main harmonic formed using a discrete Fourier transform, by multiplying them by a correction factor, which is a function of the values of the input signal amplitude and its main harmonic. The proposed algorithm for generating OS input signals in microprocessor defenses is characterized by high performance in transient modes and has wide functionality. A block diagram of an OS equivalent signal generator has been developed, all blocks of which can be implemented according to known schemes on a microelectronic and microprocessor element base. The OS shaper model is implemented in the MatLab-Simulink dynamic modeling environment. The model functioning was checked using two types of test actions, viz. a sinusoidal signal with a frequency of 50 Hz (idealized action) and a signal close to the real secondary current of a short-circuit current transformer. As a result of the performed calculations, a significant (up to two times) in the speed of the proposed method of OS formation in comparison with the formers based on the discrete Fourier transform, frequency properties of both formers being identical.

Publisher

Belarusian National Technical University

Subject

Energy Engineering and Power Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

Reference11 articles.

1. Shneerson E. M. (2007) Digital Relay Protection. Moscow, Energoatomizdat Publ. 549 (in Russian).

2. Romaniuk F. A., Rumjansev V. Yu., Romaniuk K. F. (2012) Principles of Fulfillment of Flexible Formers of Orthogonal Input Value Components in Micro-Processing Protection of Power Plants. Energetika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of the CIS Higher Education Institutions and Power Engineering Associations, (6), 5–10 (in Russisn). https://doi.org/10.21122/1029-7448-2012-0-6-76-82.

3. Rumiantsev Yu. V., Romaniuk F. A., Rumiantsev V. Yu., Novash I. V. (2016) Digital Filters Implementation in Microprocessor-Based Relay Protection. Energetika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of the CIS Higher Education Institutions and Power Engineering Associations, 59 (5), 397–417 (in Russian). https://doi.org/10.21122/1029-7448-2016-59-5-397-417.

4. Romaniuk F. A., Loman М. S., Kachenya V. S. (2019) Methods of Forming Orthogonal Components of Input Signals for Relay Protection. Energetika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of the CIS Higher Education Institutions and Power Engineering Associations, 62 (1), 5–14 (in Russian). https://doi.org/10.21122/1029-7448-2019-62-1-5-14.

5. Romaniuk F. A., Rumiantsev V. Yu., Novash I. A., Rumiantsev Yu. V. (2019) Technique of Performance Improvement of the Microprocessor-Based Protection Measuring Element. Energetika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of the CIS Higher Education Institutions and Power Engineering Associations, 62 (5), 403–412 (in Russian). https://doi.org/10.21122/1029-7448-2019-62-5-403-412.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improving of Functioning Stability of Current Measuring Elements in Microprocessor Protections;Science & Technique;2022-10-07

2. Formation of Orthogonal Components of Input Signals in Digital Measuring Protection Elements with Correction of Dynamic Errors;ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations;2022-08-02

3. Compensation of Dynamic Phase Error in the Formation of Orthogonal Components of Input Signals in Microprocessor Protections;ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations;2022-06-03

4. Analysis of the Effect of Emergency Ventilators on the Treatment of Critical Illness Based on Smart Medical Big Data;Journal of Healthcare Engineering;2021-09-21

5. Formation of Orthogonal Components of Input Currents in Microprocessor Protections of Electrical Equipment;ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations;2021-06-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3