Author:
Li Ming,Zhang Ren,Chen Xi,Liu Kefeng
Abstract
As ocean environment is complicated and varied, underwater vehicles (UVs) are facing great challenges in safe and precise navigation. Therefore, it is important to evaluate the underwater ocean environment safety for the UV navigation. To deal with the uncertain knowledge and various information in the safety assessment, we present an evaluation model based on the dynamic Bayesian network (DBN) theory. Firstly, characteristic indicators are extract from marine environment systems and discretized with Cloud model. Then, the DBN is constructed through structure learning and parameter learning based on Dempster-Shafer (DS) evidence theory. Finally, the dynamic evaluation and risk zoning of the navigation safety is realized based on Bayesian probabilistic reasoning. The DBN-based assessment model fully considers the uncertainty of influence relationships between marine environment and UV navigation, and effectively fuses expert knowledge and quantitative data for assessment modeling. The experimental results show the proposed model has high reliability and good value of application.
Funder
National Natural Science Foundation of China
Subject
Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献