Adaptive Whale Optimization Algorithm–DBiLSTM for Autonomous Underwater Vehicle (AUV) Trajectory Prediction

Author:

Guo Shufang12ORCID,Zhang Jing123ORCID,Zhang Tianchi4

Affiliation:

1. School of Information Science and Engineering, University of Jinan, Jinan 250022, China

2. Shandong Provincial Key Laboratory of Network-Based Intelligent Computing, University of Jinan, Jinan 250022, China

3. School of Data Intelligence, Yantai Institute of Science and Technology, Yantai 265699, China

4. School of Information Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China

Abstract

AUVs are autonomous underwater robots equipped with advanced sensors and navigation systems. Due to the complexity and uncertainty of the marine environment, AUVs are susceptible to the effects of the marine environment and may experience communication delays or even accidents. Based on the aforementioned issues, this paper proposes a prediction method for lost AUVs based on an adaptive optimization depth BiLSTM (AWOA-DBiLSTM) neural network model. To enhance prediction accuracy, AWOA-DBiLSTM employs a double BiLSTM to extract AUV features from positional information and physical attitude. Additionally, AWOA-DBiLSTM utilizes a gating mechanism to filter and reset physical attitude feature information to obtain features associated with positional information. After undergoing filtering operations, the physical attitude information of the AUV is fused with the position information to achieve trajectory prediction. For the first time, the differentiation and stratified extraction of AUV data features are presented in this paper. The experimental results demonstrate that the model achieves significant improvements in prediction accuracy and generalization, and the present study is of great significance for application in the task of predicting the trajectories of lost AUVs.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3