Affiliation:
1. School of Urban Railway Transportation, Shanghai University of Engineering Science, No. 333, Long-teng Road, Shanghai 201620, China
Abstract
The operational reliability of rail vehicle pantograph systems is evaluated by transforming T-S multistate fault trees into dynamic Bayesian networks (DBNs), which take into account system multistability, long-lasting operation, dynamic failure, and maintenance recovery. The T-S multistate fault tree structure is constructed by the content validity ratio and content validity index; the T-S gate rule expressing causal uncertainty is constructed by using fuzzy theory and dependent uncertain ordered weighted averaging expert scoring, and finally, the pantograph T-S multistate fault tree is transformed into a DBN model characterizing the dynamic interaction and time dependence of the system. The dynamic evolution laws of reliability of a pantograph system in maintenance and maintenance-free states over time are inferred, compared and analyzed. The results show that the system availability of a pantograph system decreases continuously during 720 days of operation. The system availability without maintenance decreases to 0.881, and the system availability with maintenance is 0.952. The reliability of a pantograph system can be effectively ensured with maintenance during the operation period; the sensitivity analysis is performed by changing the failure rate of the equipment to 120% or 80%; the fall indicator, the electrical control box, and the elevating bow motor are the weak links in the system, and the impact of fault escalation on the reliability of a pantograph system is analyzed. It is then verified that the system reliability can be further improved by using a preventive maintenance strategy, and the steady-state reliability can be gradually reached, which is about 0.9968, providing a reference for the maintenance of a pantograph system.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献