Patient-Patient Similarity-Based Screening of a Clinical Data Warehouse to Support Ciliopathy Diagnosis

Author:

Chen Xiaoyi,Faviez Carole,Vincent Marc,Briseño-Roa Luis,Faour Hassan,Annereau Jean-Philippe,Lyonnet Stanislas,Zaidan Mohamad,Saunier Sophie,Garcelon Nicolas,Burgun Anita

Abstract

A timely diagnosis is a key challenge for many rare diseases. As an expanding group of rare and severe monogenic disorders with a broad spectrum of clinical manifestations, ciliopathies, notably renal ciliopathies, suffer from important underdiagnosis issues. Our objective is to develop an approach for screening large-scale clinical data warehouses and detecting patients with similar clinical manifestations to those from diagnosed ciliopathy patients. We expect that the top-ranked similar patients will benefit from genetic testing for an early diagnosis. The dependence and relatedness between phenotypes were taken into account in our similarity model through medical concept embedding. The relevance of each phenotype to each patient was also considered by adjusted aggregation of phenotype similarity into patient similarity. A ranking model based on the best-subtype-average similarity was proposed to address the phenotypic overlapping and heterogeneity of ciliopathies. Our results showed that using less than one-tenth of learning sources, our language and center specific embedding provided comparable or better performances than other existing medical concept embeddings. Combined with the best-subtype-average ranking model, our patient-patient similarity-based screening approach was demonstrated effective in two large scale unbalanced datasets containing approximately 10,000 and 60,000 controls with kidney manifestations in the clinical data warehouse (about 2 and 0.4% of prevalence, respectively). Our approach will offer the opportunity to identify candidate patients who could go through genetic testing for ciliopathy. Earlier diagnosis, before irreversible end-stage kidney disease, will enable these patients to benefit from appropriate follow-up and novel treatments that could alleviate kidney dysfunction.

Funder

Agence Nationale de La Recherche

Publisher

Frontiers Media SA

Subject

Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3