Improving early diagnosis of rare diseases using Natural Language Processing in unstructured medical records: an illustration from Dravet syndrome

Author:

Lo Barco Tommaso,Kuchenbuch Mathieu,Garcelon Nicolas,Neuraz Antoine,Nabbout RimaORCID

Abstract

Abstract Background The growing use of Electronic Health Records (EHRs) is promoting the application of data mining in health-care. A promising use of big data in this field is to develop models to support early diagnosis and to establish natural history. Dravet Syndrome (DS) is a rare developmental and epileptic encephalopathy that commonly initiates in the first year of life with febrile seizures (FS). Age at diagnosis is often delayed after 2 years, as it is difficult to differentiate DS at onset from FS. We aimed to explore if some clinical terms (concepts) are significantly more used in the electronic narrative medical reports of individuals with DS before the age of 2 years compared to those of individuals with FS. These concepts would allow an earlier detection of patients with DS resulting in an earlier orientation toward expert centers that can provide early diagnosis and care. Methods Data were collected from the Necker Enfants Malades Hospital using a document-based data warehouse, Dr Warehouse, which employs Natural Language Processing, a computer technology consisting in processing written information. Using Unified Medical Language System Meta-thesaurus, phenotype concepts can be recognized in medical reports. We selected individuals with DS (DS Cohort) and individuals with FS (FS Cohort) with confirmed diagnosis after the age of 4 years. A phenome-wide analysis was performed evaluating the statistical associations between the phenotypes of DS and FS, based on concepts found in the reports produced before 2 years and using a series of logistic regressions. Results We found significative higher representation of concepts related to seizures’ phenotypes distinguishing DS from FS in the first phases, namely the major recurrence of complex febrile convulsions (long-lasting and/or with focal signs) and other seizure-types. Some typical early onset non-seizure concepts also emerged, in relation to neurodevelopment and gait disorders. Conclusions Narrative medical reports of individuals younger than 2 years with FS contain specific concepts linked to DS diagnosis, which can be automatically detected by software exploiting NLP. This approach could represent an innovative and sustainable methodology to decrease time of diagnosis of DS and could be transposed to other rare diseases.

Funder

Agence Nationale de la Recherche under “Investissements d’Avenir” program

“Fondation Bettencourt Schueller”

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Genetics(clinical),General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3