Automatically pre-screening patients for the rare disease aromatic l-amino acid decarboxylase deficiency using knowledge engineering, natural language processing, and machine learning on a large EHR population

Author:

Cohen Aaron M1ORCID,Kaner Jolie1,Miller Ryan2,Kopesky Jeffrey W2,Hersh William1ORCID

Affiliation:

1. Department of Medical Informatics and Clinical Epidemiology, School of Medicine, Oregon Health & Science University , Portland, OR 97239, United States

2. PTC Therapeutics , South Plainfield, NJ 07080, United States

Abstract

Abstract Objectives Electronic health record (EHR) data may facilitate the identification of rare diseases in patients, such as aromatic l-amino acid decarboxylase deficiency (AADCd), an autosomal recessive disease caused by pathogenic variants in the dopa decarboxylase gene. Deficiency of the AADC enzyme results in combined severe reductions in monoamine neurotransmitters: dopamine, serotonin, epinephrine, and norepinephrine. This leads to widespread neurological complications affecting motor, behavioral, and autonomic function. The goal of this study was to use EHR data to identify previously undiagnosed patients who may have AADCd without available training cases for the disease. Materials and Methods A multiple symptom and related disease annotated dataset was created and used to train individual concept classifiers on annotated sentence data. A multistep algorithm was then used to combine concept predictions into a single patient rank value. Results Using an 8000-patient dataset that the algorithms had not seen before ranking, the top and bottom 200 ranked patients were manually reviewed for clinical indications of performing an AADCd diagnostic screening test. The top-ranked patients were 22.5% positively assessed for diagnostic screening, with 0% for the bottom-ranked patients. This result is statistically significant at P < .0001. Conclusion This work validates the approach that large-scale rare-disease screening can be accomplished by combining predictions for relevant individual symptoms and related conditions which are much more common and for which training data is easier to create.

Funder

PTC Therapeutics

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3