Identification of Similar Patients Through Medical Concept Embedding from Electronic Health Records: A Feasibility Study for Rare Disease Diagnosis

Author:

Chen Xiaoyi1,Faviez Carole1,Vincent Marc2,Garcelon Nicolas2,Saunier Sophie3,Burgun Anita145

Affiliation:

1. Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, F-75006, Paris, France

2. Université de Paris, Imagine Institute, Data Science Platform, INSERM UMR 1163, F-75015, Paris, France

3. Université de Paris, Imagine Institute, Laboratory of Renal Hereditary Diseases, INSERM UMR 1163, F-75015, Paris, France

4. Hôpital Necker-Enfants Malades, Département d’informatique médicale, Assistance Publique-Hôpitaux de Paris (AP-HP), F-75015, Paris, France

5. PaRis Artificial Intelligence Research InstitutE (PRAIRIE), France

Abstract

To identify patients with similar clinical profiles and derive insights from the records and outcomes of similar patients can help fast and precise diagnosis and other clinical decisions for rare diseases. Similarity methods are required to take into account the semantic relations between medical concepts and also the different relevance of all medical concepts presented in patients’ medical records. In this paper, we introduce the methods developed in the context of rare disease screening/diagnosis from clinical data warehouse using medical concept embedding and adjusted aggregations. Our methods provided better preliminary results than baseline methods, with a significant improvement of precision among the top ranked similar patients, which is encouraging for further fine-tuning and application on a large-scale dataset for new/candidate patient identification.

Publisher

IOS Press

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3