Improving Patient Similarity Using Different Modalities of Phenotypes Extracted from Clinical Narratives

Author:

Chen Xiaoyi123ORCID,Faviez Carole23,Vincent Marc1,Saunier Sophie4,Garcelon Nicolas123,Burgun Anita2356

Affiliation:

1. Data Science Platform, Imagine Institute, Université de Paris Cité, Inserm UMR 1163, Paris, France

2. Inserm, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris Cité, Paris, France

3. HeKA, Inria Paris, Paris, France

4. Laboratory of Renal Hereditary Diseases, Imagine Institute, Université de Paris Cité, Inserm UMR 1163, Paris, France

5. Hôpital Necker-Enfants Malades, Département d’informatique médicale, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France

6. PaRis Artificial Intelligence Research InstitutE (PRAIRIE), France

Abstract

In the context of medical concept extraction, it is critical to determine if clinical signs or symptoms mentioned in the text were present or absent, experienced by the patient or their relatives. Previous studies have focused on the NLP aspect but not on how to leverage this supplemental information for clinical applications. In this paper, we aim to use the patient similarity networks framework to aggregate different phenotyping modalities. NLP techniques were applied to extract phenotypes and predict their modalities from 5470 narrative reports of 148 patients with ciliopathies (a group of rare diseases). Patient similarities were computed using each modality separately for aggregation and clustering. We found that aggregating negated phenotypes improved patient similarity, but further aggregating relatives’ phenotypes worsened the result. We suggest that different modalities of phenotypes can contribute to patient similarity, but they should be aggregated carefully and with appropriate similarity metrics and aggregation models.

Publisher

IOS Press

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3