Application of improved YOLOv7-based sugarcane stem node recognition algorithm in complex environments

Author:

Wen Chunming,Guo Huanyu,Li Jianheng,Hou Bingxu,Huang Youzong,Li Kaihua,Nong Hongliang,Long Xiaozhu,Lu Yuchun

Abstract

IntroductionSugarcane stem node detection is one of the key functions of a small intelligent sugarcane harvesting robot, but the accuracy of sugarcane stem node detection is severely degraded in complex field environments when the sugarcane is in the shadow of confusing backgrounds and other objects.MethodsTo address the problem of low accuracy of sugarcane arise node detection in complex environments, this paper proposes an improved sugarcane stem node detection model based on YOLOv7. First, the SimAM (A Simple Parameter-Free Attention Module for Convolutional Neural Networks) attention mechanism is added to solve the problem of feature loss due to the loss of image global context information in the convolution process, which improves the detection accuracy of the model in the case of image blurring; Second, the Deformable convolution Network is used to replace some of the traditional convolution layers in the original YOLOv7. Finally, a new bounding box regression loss function WIoU Loss is introduced to solve the problem of unbalanced sample quality, improve the model robustness and generalization ability, and accelerate the convergence speed of the network.ResultsThe experimental results show that the mAP of the improved algorithm model is 94.53% and the F1 value is 92.41, which are 3.43% and 2.21 respectively compared with the YOLOv7 model, and compared with the mAP of the SOTA method which is 94.1%, an improvement of 0.43% is achieved, which effectively improves the detection performance of the target detection model.DiscussionThis study provides a theoretical basis and technical support for the development of a small intelligent sugarcane harvesting robot, and may also provide a reference for the detection of other types of crops in similar environments.

Publisher

Frontiers Media SA

Subject

Plant Science

Reference25 articles.

1. Yolov4: Optimal speed and accuracy of object detection;Bochkovskiy;arXiv preprint arXiv:2004.10934,2020

2. Sugarcane stem node recognition in field by deep learning combining data expansion;Chen;Appl. Sci.,2021

3. Sugarcane nodes identification algorithm based on sum of local pixel of minimum points of vertical projection function;Chen;Comput. Electron. Agric.,2021

4. Deformable convolutional networks;Dai,2017

5. Coordinate attention for efficient mobile network design;Hou,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3