Affiliation:
1. College of Field Engineering, Army Engineering University of PLA, Nanjing 210007, China
Abstract
The technology for object detection in remote sensing images finds extensive applications in production and people’s lives, and improving the accuracy of image detection is a pressing need. With that goal, this paper proposes a range of improvements, rooted in the widely used YOLOv7 algorithm, after analyzing the requirements and difficulties in the detection of remote sensing images. Specifically, we strategically remove some standard convolution and pooling modules from the bottom of the network, adopting stride-free convolution to minimize the loss of information for small objects in the transmission. Simultaneously, we introduce a new, more efficient attention mechanism module for feature extraction, significantly enhancing the network’s semantic extraction capabilities. Furthermore, by adding multiple cross-layer connections in the network, we more effectively utilize the feature information of each layer in the backbone network, thereby enhancing the network’s overall feature extraction capability. During the training phase, we introduce an auxiliary network to intensify the training of the underlying network and adopt a new activation function and a more efficient loss function to ensure more effective gradient feedback, thereby elevating the network performance. In the experimental results, our improved network achieves impressive mAP scores of 91.2% and 80.8% on the DIOR and DOTA version 1.0 remote sensing datasets, respectively. These represent notable improvements of 4.5% and 7.0% over the original YOLOv7 network, significantly enhancing the efficiency of detecting small objects in particular.
Funder
National Natural Science Foundation of China
Reference60 articles.
1. Zhu, P.F., Wen, L., Du, D., Bian, X., Ling, H., Hu, Q., Nie, Q., Cheng, H., Liu, C., and Liu, X. (2019, January 27–28). VisDrone-DET2019: The Vision Meets Drone Object Detection in Image Challenge Results. Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul, Republic of Korea.
2. A Survey on Object Detection in Optical Remote Sensing Images;Cheng;ISPRS J. Photogramm. Remote Sens.,2016
3. Object Detection in Optical Remote Sensing Images: A Survey and a New Benchmark;Li;ISPRS J. Photogramm. Remote Sens.,2020
4. Zheng, Z., Lei, L., Sun, H., and Kuang, G. (2020, January 10–12). A Review of Remote Sensing Image Object Detection Algorithms Based on Deep Learning. Proceedings of the 2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC), Beijing, China.
5. A Survey of Object Detection in Optical Remote Sensing Images;Nie;Zidonghua Xuebao/Acta Autom. Sin.,2021