Improved Architecture and Training Strategies of YOLOv7 for Remote Sensing Image Object Detection

Author:

Zhao Dewei1,Shao Faming1,Liu Qiang1,Zhang Heng1,Zhang Zihan1,Yang Li1

Affiliation:

1. College of Field Engineering, Army Engineering University of PLA, Nanjing 210007, China

Abstract

The technology for object detection in remote sensing images finds extensive applications in production and people’s lives, and improving the accuracy of image detection is a pressing need. With that goal, this paper proposes a range of improvements, rooted in the widely used YOLOv7 algorithm, after analyzing the requirements and difficulties in the detection of remote sensing images. Specifically, we strategically remove some standard convolution and pooling modules from the bottom of the network, adopting stride-free convolution to minimize the loss of information for small objects in the transmission. Simultaneously, we introduce a new, more efficient attention mechanism module for feature extraction, significantly enhancing the network’s semantic extraction capabilities. Furthermore, by adding multiple cross-layer connections in the network, we more effectively utilize the feature information of each layer in the backbone network, thereby enhancing the network’s overall feature extraction capability. During the training phase, we introduce an auxiliary network to intensify the training of the underlying network and adopt a new activation function and a more efficient loss function to ensure more effective gradient feedback, thereby elevating the network performance. In the experimental results, our improved network achieves impressive mAP scores of 91.2% and 80.8% on the DIOR and DOTA version 1.0 remote sensing datasets, respectively. These represent notable improvements of 4.5% and 7.0% over the original YOLOv7 network, significantly enhancing the efficiency of detecting small objects in particular.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3