Sugarcane Stem Node Recognition in Field by Deep Learning Combining Data Expansion

Author:

Chen Wen,Ju Chengwei,Li Yanzhou,Hu ShanshanORCID,Qiao Xi

Abstract

The rapid and accurate identification of sugarcane stem nodes in the complex natural environment is essential for the development of intelligent sugarcane harvesters. However, traditional sugarcane stem node recognition has been mainly based on image processing and recognition technology, where the recognition accuracy is low in a complex natural environment. In this paper, an object detection algorithm based on deep learning was proposed for sugarcane stem node recognition in a complex natural environment, and the robustness and generalisation ability of the algorithm were improved by the dataset expansion method to simulate different illumination conditions. The impact of the data expansion and lighting condition in different time periods on the results of sugarcane stem nodes detection was discussed, and the superiority of YOLO v4, which performed best in the experiment, was verified by comparing it with four different deep learning algorithms, namely Faster R-CNN, SSD300, RetinaNet and YOLO v3. The comparison results showed that the AP (average precision) of the sugarcane stem nodes detected by YOLO v4 was 95.17%, which was higher than that of the other four algorithms (78.87%, 88.98%, 90.88% and 92.69%, respectively). Meanwhile, the detection speed of the YOLO v4 method was 69 f/s and exceeded the requirement of a real-time detection speed of 30 f/s. The research shows that it is a feasible method for real-time detection of sugarcane stem nodes in a complex natural environment. This research provides visual technical support for the development of intelligent sugarcane harvesters.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3